Cosmological simulations of galaxy formation

Abstract:
Over recent decades, cosmological simulations of galaxy formation have been instrumental in advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the nonlinear evolution of galaxies, modelling a variety of physical processes over an enormous range of time and length scales. A better understanding of the relevant physical processes, improved numerical methods and increased computing power have led to simulations that can reproduce a large number of the observed galaxy properties. Modern simulations model dark matter, dark energy and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modelling of ordinary matter is most challenging due to the large array of physical processes affecting this component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This Technical Review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications. Cosmological computer simulations of galaxy formation emerged as the primary tool to study structure formation in the Universe. This Technical Review describes the main techniques and ingredients of such simulations and their application to develop and constrain galaxy formation theories. The formation of structures and galaxies in the Universe, which consists of ordinary matter, dark energy and dark matter, involves various physical processes such as gravity, gas cooling, star formation, supernova feedback, supermassive black hole feedback, stellar evolution, radiation, magnetic fields, cosmic rays and more. Cosmological simulations allow detailed studies of the formation and evolution of\xa0structures and galaxies in the cosmos, starting from smooth initial conditions constrained through observations of the cosmic microwave background, yielding detailed predictions of the galaxy population at different epochs of the Universe. The dark matter component is typically numerically modelled through the N -body approach. Here, the dark matter phase-space distribution is sampled by an ensemble of phase-space sampling points, resulting in a Monte Carlo scheme, to follow its dynamics, which are governed by the collisionless Boltzmann equation. The gas content of the baryonic matter component is, in its simplest form, described through the Euler equations, discretized with Eulerian, Lagrangian or arbitrary Lagrangian–Eulerian schemes, coupled to other physical processes such as gravity, cooling processes, feedback processes and star formation. Alternative forms of dark matter, dark energy and gravity can also be explored through suitable modified simulation methods to test and constrain such theories in the context of structure and galaxy formation, by comparing to observational data such as galaxy surveys, leading to important insights into the overall cosmological framework of structure formation and cosmological parameters.
Author Listing: Mark Vogelsberger;Federico Marinacci;Paul Torrey;Ewald Puchwein
Volume: 2
Pages: 42-66
DOI: 10.1038/s42254-019-0127-2
Language: English
Journal: Nature Reviews Physics

Nature Reviews Physics

NAT REV PHYS

影响因子:39.5 是否综述期刊:是 是否OA:否 是否预警:不在预警名单内 发行时间:- ISSN:2522-5820 发刊频率:12 issues per year 收录数据库:SCIE/Scopus收录 出版国家/地区:ENGLAND 出版社:SPRINGERNATURE

期刊介绍

Nature Reviews Physics is an online-only journal publishing high-quality technical reference, review and commentary articles in all areas of fundamental and applied physics.

《自然评论物理学》是一本在线杂志,出版基础物理学和应用物理学所有领域的高质量技术参考、评论和评论文章。

年发文量 48
国人发稿量 6
国人发文占比 12.73%
自引率 0.7%
平均录取率 -
平均审稿周期 -
版面费 -
偏重研究方向 Multiple-
期刊官网 https://www.nature.com/natrevphys/?utm_medium=display&utm_source=letpub&utm_content=text_link&utm_term=null&utm_campaign=MPSR_42254_AWA1_CN_CNPL_letpb_mp
投稿链接 https://mts-natrevphys.nature.com/

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
0.00% 3.52% - -

相关指数

{{ relationActiveLabel }}
{{ item.label }}

期刊预警不是论文评价,更不是否定预警期刊发表的每项成果。《国际期刊预警名单(试行)》旨在提醒科研人员审慎选择成果发表平台、提示出版机构强化期刊质量管理。

预警期刊的识别采用定性与定量相结合的方法。通过专家咨询确立分析维度及评价指标,而后基于指标客观数据产生具体名单。

具体而言,就是通过综合评判期刊载文量、作者国际化程度、拒稿率、论文处理费(APC)、期刊超越指数、自引率、撤稿信息等,找出那些具备风险特征、具有潜在质量问题的学术期刊。最后,依据各刊数据差异,将预警级别分为高、中、低三档,风险指数依次减弱。

《国际期刊预警名单(试行)》确定原则是客观、审慎、开放。期刊分区表团队期待与科研界、学术出版机构一起,夯实科学精神,打造气正风清的学术诚信环境!真诚欢迎各界就预警名单的分析维度、使用方案、值得关切的期刊等提出建议!

预警情况 查看说明

时间 预警情况
2024年02月发布的2024版 不在预警名单中
2023年01月发布的2023版 不在预警名单中
2021年12月发布的2021版 不在预警名单中
2020年12月发布的2020版 不在预警名单中

JCR分区 WOS分区等级:Q1区

版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2021-2022年最新版)
PHYSICS, APPLIED Q1
PHYSICS, MULTIDISCIPLINARY Q1

关于2019年中科院分区升级版(试行)

分区表升级版(试行)旨在解决期刊学科体系划分与学科发展以及融合趋势的不相容问题。由于学科交叉在当代科研活动的趋势愈发显著,学科体系构建容易引发争议。为了打破学科体系给期刊评价带来的桎梏,“升级版方案”首先构建了论文层级的主题体系,然后分别计算每篇论文在所属主题的影响力,最后汇总各期刊每篇论文分值,得到“期刊超越指数”,作为分区依据。

分区表升级版(试行)的优势:一是论文层级的主题体系既能体现学科交叉特点,又可以精准揭示期刊载文的多学科性;二是采用“期刊超越指数”替代影响因子指标,解决了影响因子数学性质缺陷对评价结果的干扰。整体而言,分区表升级版(试行)突破了期刊评价中学科体系构建、评价指标选择等瓶颈问题,能够更为全面地揭示学术期刊的影响力,为科研评价“去四唯”提供解决思路。相关研究成果经过国际同行的认可,已经发表在科学计量学领域国际重要期刊。

《2019年中国科学院文献情报中心期刊分区表升级版(试行)》首次将社会科学引文数据库(SSCI)期刊纳入到分区评估中。升级版分区表(试行)设置了包括自然科学和社会科学在内的18个大类学科。基础版和升级版(试行)将过渡共存三年时间,推测在此期间各大高校和科研院所仍可能会以基础版为考核参考标准。 提示:中科院分区官方微信公众号“fenqubiao”仅提供基础版数据查询,暂无升级版数据,请注意区分。

中科院分区 查看说明

版本 大类学科 小类学科 Top期刊 综述期刊
物理与天体物理
1区
PHYSICS, APPLIED
物理:应用
1区
PHYSICS, MULTIDISCIPLINARY
物理:综合
1区
2021年12月
基础版
物理
1区
PHYSICS, APPLIED
物理:应用
1区
PHYSICS, MULTIDISCIPLINARY
物理:综合
1区
2021年12月
升级版
物理与天体物理
1区
PHYSICS, APPLIED
物理:应用
1区
PHYSICS, MULTIDISCIPLINARY
物理:综合
1区
2022年12月
最新升级版
物理与天体物理
1区
PHYSICS, APPLIED
物理:应用
1区
PHYSICS, MULTIDISCIPLINARY
物理:综合
1区